東吳大學教師授課計劃表

檔案產生時間:2022/3/4 下午 08:06:30
本表如有異動,於4小時內自動更新
一、課程基本資料 Course Information
科目名稱 Course Title:
(中文)資料探勘
(英文)DATA MINGING
開課學期 Semester:110學年度第2學期
開課班級 Class:資科專一
授課教師 Instructor:呂明 LU, MING-YING
科目代碼 Course Code:WDD70401 單全學期 Semester/Year:單 分組組別 Section:
人數限制 Class Size: 必選修別 Required/Elective:選 學分數 Credit(s):2
星期節次 Day/Session: 六34  前次異動時間 Time Last Edited:111年01月11日02時09分
二、指定教科書及參考資料 Textbooks and Reference
(請修課同學遵守智慧財產權,不得非法影印)
●指定教科書 Required Texts
1.Introduction to data mining,作者:Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar
華泰文化
●參考書資料暨網路資源 Reference Books and Online Resources
1.A Practical Guide to Analytics for Governments: Using Big Data for Good,作者: Lowman, Marie (EDT),出版社:John Wiley & Sons Inc
2.Data Mining for Business Analytics: Concepts, Techniques, and Applications in R,作者: Shmueli, Galit/ Bruce, Peter C./ Yahav, Inbal/ Patel, Nitin R./ Lichtendahl, Kenneth C., Jr.,原文出版社:John Wiley & Sons Inc
3.Data Mining With R: Learning With Case Studies,作者: Torgo, Luis,原文出版社:Chapman & Hall
4.R語言資料分析:從機器學習、資料探勘、文字探勘到巨量資料分析 [第二版],作者: 李仁鐘, 李秋緣,出版社:博碩
5.認識資料科學的第一本書,Data Analytics Made Accessible,作者: Anil Maheshwari,譯者: 徐瑞珠,出版社:碁峰
三、教學目標 Objectives
資料探勘是指發掘資料中知識、洞見與模型的技術,從組織好的資料中萃取有用模式的行為。模式必須有效、具使用潛力並可了解,其背後的假設為,利用過去的資料預測未來的活動。
巨量資料分析被哈佛商業評論譽為21世紀最誘人的工作之一,其在各行業之重要性日漸提升。
本課程的目標是要讓學生學習運用模型預測資料之觀念、技術及應用,使其具備就業市場中非常新穎與重要之專業技能。
Data mining refers to the technology of excavating knowledge, insights, and models in data, and extracting useful patterns from organized data. The model must be effective, useful, and understandable. The assumption behind it is to use the past data to predict future activities.
Huge amount of data analysis has been hailed as one of the most attractive jobs in the 21st century by the Harvard Business Review, and its importance in various industries is increasing day by day.
The goal of this course is to enable students to learn the concepts, techniques, and applications of model prediction data to make them highly innovative and important skills in the job market.
四、課程內容 Course Description
整體敘述 Overall Description
本學期進度預計涵蓋:
認識資料
資料處理
探勘建模
分類與預測 (Classification): Basic Concepts, Decision Tree, Rule-based Classifier, Nearest Neighbor Classifier, Naïve Bayes Classifier, Artificial Neural Networks, Support Vector Machine 
關聯規則 (Association Analysis): Basic Concepts and Algorithms
聚類分析 (Clustering Analysis): Basic Concepts and Algorithms
資料建模


此外,本學期課程亦安排實作。透過實作練習讓學生更能體會巨量資料的發展與應用。
●分週敘述 Weekly Schedule
週次 Wk 日期 Date 課程內容 Content 備註 Note

1

2/26 課程介紹   

2

3/5 認識資料   

3

3/12 資料處理   

4

3/19 探勘建模:分類與預測   

5

3/26 探勘建模:分類與預測 (實作)

6

4/2 國定假日停課乙次   

7

4/9 探勘建模:分類與預測 (實作)

8

4/16 探勘建模:關聯規則   

9

4/23 探勘建模:關聯規則 (實作)

10

4/30 國定假日停課乙次   

11

5/7 探勘建模:關聯規則   

12

5/14 探勘建模:關聯規則 (實作)

13

5/21 探勘建模:聚類分析   

14

5/28 探勘建模:聚類分析 (實作)

15

6/4 國定假日停課乙次   

16

6/11 探勘建模:聚類分析   

17

6/18 探勘建模:聚類分析 (實作)

18

6/25 彈性補充教學(視進度進行)   
五、考評及成績核算方式 Grading
配分項目 Items 次數 Times 配分比率 Percentage 配分標準說明 Grading Description
出席 20%包含課堂表現與出席
實作480%本學期須繳交數次實作作業,做為評分標準。
配分比率加總 100%  
六、授課教師課業輔導時間和聯絡方式 Office Hours And Contact Info
●課業輔導時間 Office Hour
By appointment
●聯絡方式 Contact Info
研究室地點 Office: EMAIL:mylu@gm.scu.edu.tw
聯絡電話 Tel: 其他 Others:
七、教學助理聯絡方式 TA’s Contact Info
教學助理姓名 Name 連絡電話 Tel EMAIL 其他 Others
八、建議先修課程 Suggested Prerequisite Course
九、課程其他要求 Other Requirements
十、學校教材上網、數位學習平台及教師個人網址 University’s Web Portal And Teacher's Website
學校教材上網網址 University’s Teaching Material Portal:
東吳大學Moodle數位平台:http://isee.scu.edu.tw
學校數位學習平台 University’s Digital Learning Platform:
☐東吳大學Moodle數位平台:http://isee.scu.edu.tw
☐東吳大學Tronclass行動數位平台:https://tronclass.scu.edu.tw
教師個人網址 Teacher's Website:
其他 Others:
十一、計畫表公布後異動說明 Changes Made After Posting Syllabus