一、課程基本資料 Course Information | ||||||||||||||||||||||||||||||||||||||||
科目名稱 Course Title: (中文)人工智慧與金融科技資訊能力 (英文)ARTIFICIAL INTELLIGENCE AND FINANCIAL TECHNOLOGY |
開課學期 Semester:110學年度第2學期 開課班級 Class:經三A |
|||||||||||||||||||||||||||||||||||||||
授課教師 Instructor:林維垣 LIN, WEI-YUAN | ||||||||||||||||||||||||||||||||||||||||
科目代碼 Course Code:BEC36401 | 單全學期 Semester/Year:單 | 分組組別 Section:資訊能力 | ||||||||||||||||||||||||||||||||||||||
人數限制 Class Size:70 | 必選修別 Required/Elective:選 | 學分數 Credit(s):3 | ||||||||||||||||||||||||||||||||||||||
星期節次 Day/Session: 五34E | 前次異動時間 Time Last Edited:111年01月17日15時20分 | |||||||||||||||||||||||||||||||||||||||
經濟學系基本能力指標 Basic Ability Index | ||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||
二、指定教科書及參考資料 Textbooks and Reference (請修課同學遵守智慧財產權,不得非法影印) |
||||||||||||||||||||||||||||||||||||||||
●指定教科書 Required Texts 1. 鄒慶生(2019),「大數據分析與應用實戰:統計機器學習之資料導向程式設計」,東華書局。 2. Andrew bird, Dr Lau Cher Han, Mario Corchero Jimenez, Graham Lee, Corey Wade, (2019),The Python Workshop, Packt Press. ●參考書資料暨網路資源 Reference Books and Online Resources 1. 曹祥雲 (2017),「Python 程式設計入門與運算思維」,新陸書局。 2. 潘文超 (2011),「最新演化式計算技術–果蠅最佳化演算法」,滄海書局。 3. 陳景祥(2016),「R 軟體應用統計方法」,東華書局。 4. 蔡立耑(2018),「金融科技實戰:R 語言與量化投資」,博碩文化。 5. 蔡立耑(2018),「金融科技實戰: Python 與量化投資」,博碩文化。 6. 韓傳、毛俊杰 (2016),「R 語言與商業智能」, 電子工業出版社,北京。 7. 薛薇(2014),「R 語言數據挖掘」, 中國人民大學,北京。 8. 曹祥雲 (2017),「Python 程式設計入門與運算思維」,新陸書局。 9. 謝邦昌,鄭宇庭 (2016),「統計機器學習 (在R中的實踐)」,新陸書局。 10. 陳景祥(2016),「R 軟體應用統計方法」,東華書局。 11. 李顯正(2016),「金融科技概論」,新陸書局。 12. 謝邦昌,鄭宇庭 (2016),「統計機器學習 (在R中的實踐)」,新陸書局。 13. Gaddis,T. (2015), Starting Out with Python, Third Edition. Pearson. 14. Ghatak,Abhijit (2017),Machine Learning with R, Springer Nature, Singapore. 15. Robert Layton (2017) Learning Data Mining with Python, Second Edition, Packt Publishing Ltd. 16. Aggarwal,Charu C. (2018),Neural Networks and Deep Learning,Springer Nature, USA. 17. Hunt,John (2019), Advanced Guide to Python 3 Programming,Springer Nature,Switzerland. 18. Ryan Mitchell(2015), "Web Scraping with Python", O'Reilly Media,Inc. 19. Bo Xing and Wen-Jing Gao (2013) ,“Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms", Springer. 20. Simon Munzert, et.al (2015),"Automated Data Collection with R", Wiley. | ||||||||||||||||||||||||||||||||||||||||
三、教學目標 Objectives | ||||||||||||||||||||||||||||||||||||||||
凡是研究現代經濟學的同學們除了需具備有關經濟學的理論基礎外,利用電腦工具以數學、統計學與人工智慧方法分析網路金融巨量資料,將是未來的主流趨勢。 因此本課程將配合網路科技的發展趨勢,強化金融科技的應用需求,使同學們都能學以致用。我們將循序漸進地介紹當前各種流行的電腦語言( R 、Python) 程式設計並與網路相互結合。並將介紹傳統的人工智慧與新的生物演算法,如人工神經網路(深度學習、強化式學習)、遺傳演算法、支援向量機、以及我們所發展的果蠅演算法(FOA)與領導者與追隨者(LFOA)演算法等,這將大大增強傳統計量方法的效率,使學生們都能夠學習到一些電腦編程知識和軟件應用,瞭解如何利用人工智慧的方法來解決各種複雜的經濟與金融問題。 |
||||||||||||||||||||||||||||||||||||||||
In addition to the theoretical foundations of economics, students who study modern economics will use computer tools to analyze massive amounts of online financial data using mathematics, statistics and artificial intelligence methods. This will be the mainstream trend in the future. Therefore, this course will cooperate with the development trend of Internet technology, strengthen the application requirements of financial technology, so that students can apply what they have learned. We will introduce the programming of various popular computer languages (R, Python) and integrate them with the Internet step by step. We will also introduce traditional artificial intelligence and new biological algorithms, such as artificial neural networks (deep learning, reinforcement learning), genetic algorithm, support vector machine, Fruit Fly Optimization Algorithm (FOA) and Leaders and Followers Algorithms (LFA), which will greatly enhance the efficiency of traditional measurement methods, so that students can learn some computer programming knowledge and software applications, and understand how to use artificial intelligence methods to solve various complex economic and financial problems. |
||||||||||||||||||||||||||||||||||||||||
四、課程內容 Course Description | ||||||||||||||||||||||||||||||||||||||||
●整體敘述 Overall Description 首先介紹 Python 與 R 等軟體的基本語法與操作,其次說明人工智慧方法在財務與經濟學上的應用,最後再以範例,實作個案研究。 |
●分週敘述 Weekly Schedule
|
五、考評及成績核算方式 Grading | ||||||||||||||||||||
| ||||||||||||||||||||
六、授課教師課業輔導時間和聯絡方式 Office Hours And Contact Info | ||||||||||||||||||||
●課業輔導時間 Office Hour 星期五 14:10 p.m.- 15:00 p.m. |
||||||||||||||||||||
●聯絡方式 Contact Info
|
七、教學助理聯絡方式 TA’s Contact Info | |||||
| |||||
八、建議先修課程 Suggested Prerequisite Course | |||||
無 | |||||
九、課程其他要求 Other Requirements | |||||
平時講授教材外,另指定作業(包括電腦作業)與習題 自備筆電 | |||||
十、學校教材上網、數位學習平台及教師個人網址 University’s Web Portal And Teacher's Website | |||||
學校教材上網網址 University’s Teaching Material Portal: 東吳大學Moodle數位平台:http://isee.scu.edu.tw |
|||||
學校數位學習平台 University’s Digital Learning Platform: ☐東吳大學Moodle數位平台:http://isee.scu.edu.tw ☐東吳大學Tronclass行動數位平台:https://tronclass.scu.edu.tw | |||||
教師個人網址 Teacher's Website:http://www.flyfoa.com | |||||
其他 Others:http://myweb.scu.edu.tw/~k8888/ | |||||
十一、計畫表公布後異動說明 Changes Made After Posting Syllabus | |||||