一、課程基本資料 Course Information | ||||||||||||||||||||||||||||||||||||
科目名稱 Course Title: (中文)自然語言處理 (英文)NATURAL LANGUAGE PROCESS |
開課學期 Semester:110學年度第2學期 開課班級 Class:資四A |
|||||||||||||||||||||||||||||||||||
授課教師 Instructor:黃日鉦 HUANG, JIH-JENG | ||||||||||||||||||||||||||||||||||||
科目代碼 Course Code:BCP80902 | 單全學期 Semester/Year:單 | 分組組別 Section: | ||||||||||||||||||||||||||||||||||
人數限制 Class Size:50 | 必選修別 Required/Elective:選 | 學分數 Credit(s):3 | ||||||||||||||||||||||||||||||||||
星期節次 Day/Session: 一E56 | 前次異動時間 Time Last Edited:110年12月03日09時28分 | |||||||||||||||||||||||||||||||||||
資訊管理學系基本能力指標 Basic Ability Index | ||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
二、指定教科書及參考資料 Textbooks and Reference (請修課同學遵守智慧財產權,不得非法影印) |
||||||||||||||||||||||||||||||||||||
●指定教科書 Required Texts 黃日鉦,人工智慧與深度學習—理論與Python實踐,碁峰:台北,2020,ISBN: 9789865023898。 ●參考書資料暨網路資源 Reference Books and Online Resources | ||||||||||||||||||||||||||||||||||||
三、教學目標 Objectives | ||||||||||||||||||||||||||||||||||||
本課程旨在涵蓋用於自然語言處理的最新深度學習方法。 主題包括詞嵌入/上下文化詞嵌入,預訓練和微調,機器翻譯,問題回答,摘要,信息提取,語義解析和對話系統等。此外,本課程將使用PYTHON程式來實作各種自然語言模型:包括Elmo, Transformer, Bert, GPT 等。 | ||||||||||||||||||||||||||||||||||||
(英文簡介) This course aims to cover the state-of-the-art deep learning methods for natural language processing. The topics include word embeddings/contextualized word embeddings, pre-training and fine-tuning, machine translation, question answering, summarization, information extraction, semantic parsing and dialogue systems etc. In addition, we will use python to implement some natural language models, including Elmo, Transformer, Bert, GPT, etc. |
||||||||||||||||||||||||||||||||||||
四、課程內容 Course Description | ||||||||||||||||||||||||||||||||||||
●整體敘述 Overall Description 1 Introduction to natural language process (NLP) 2 Basic feature extraction methods 3 Developing a text classifier 4 Collecting text data from the Web 5 Topic modeling 6 Text summarization and text generation 7 Vector representation 8 Sentiment analysis 9 Deep learning for NLP 10 Text embeddings 11 Textual similarity (I) 12 Textual similarity (II) 13 Episodic memory and NLP 14 Attention 15 Transformers (I) 16 Transformers (II) 17 Applications |
||||||||||||||||||||||||||||||||||||
●分週敘述 Weekly Schedule |
五、考評及成績核算方式 Grading | ||||||||||||||||||||
| ||||||||||||||||||||
六、授課教師課業輔導時間和聯絡方式 Office Hours And Contact Info | ||||||||||||||||||||
●課業輔導時間 Office Hour Mon. 3-5 |
||||||||||||||||||||
●聯絡方式 Contact Info
|
七、教學助理聯絡方式 TA’s Contact Info | |||||
| |||||
八、建議先修課程 Suggested Prerequisite Course | |||||
PYTHON | |||||
九、課程其他要求 Other Requirements | |||||
十、學校教材上網、數位學習平台及教師個人網址 University’s Web Portal And Teacher's Website | |||||
學校教材上網網址 University’s Teaching Material Portal: 東吳大學Moodle數位平台:http://isee.scu.edu.tw |
|||||
學校數位學習平台 University’s Digital Learning Platform: ☐東吳大學Moodle數位平台:http://isee.scu.edu.tw ☐東吳大學Tronclass行動數位平台:https://tronclass.scu.edu.tw | |||||
教師個人網址 Teacher's Website: | |||||
其他 Others: | |||||
十一、計畫表公布後異動說明 Changes Made After Posting Syllabus | |||||