一、課程基本資料 Course Information | ||||||||||||||||||||||||||||||||||||
科目名稱 Course Title: (中文)深度學習 (英文)DEEP LEARNING |
開課學期 Semester:110學年度第2學期 開課班級 Class:資三A |
|||||||||||||||||||||||||||||||||||
授課教師 Instructor:黃日鉦 HUANG, JIH-JENG | ||||||||||||||||||||||||||||||||||||
科目代碼 Course Code:BCP48602 | 單全學期 Semester/Year:單 | 分組組別 Section: | ||||||||||||||||||||||||||||||||||
人數限制 Class Size:60 | 必選修別 Required/Elective:選 | 學分數 Credit(s):3 | ||||||||||||||||||||||||||||||||||
星期節次 Day/Session: 五789 | 前次異動時間 Time Last Edited:110年12月03日09時20分 | |||||||||||||||||||||||||||||||||||
資訊管理學系基本能力指標 Basic Ability Index | ||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||
二、指定教科書及參考資料 Textbooks and Reference (請修課同學遵守智慧財產權,不得非法影印) |
||||||||||||||||||||||||||||||||||||
●指定教科書 Required Texts 人工智慧與深度學習:理論與Python實踐 ●參考書資料暨網路資源 Reference Books and Online Resources | ||||||||||||||||||||||||||||||||||||
三、教學目標 Objectives | ||||||||||||||||||||||||||||||||||||
近年來,深度學習的相關演算法已被廣泛使用在電腦視覺(computer vision)、神經機器翻譯(neural machine translation)、神經風格轉換(neural style transfer)及聊天機器人(chatbots)等的應用。本課程以人工智慧及深度學習的理論基礎著手,來陳述各種人工智慧演算法的理論基礎及完整數學推導過程,並輔以Python來進行各演算法的實踐,以達到精通人工智慧演算法的目的。 | ||||||||||||||||||||||||||||||||||||
In recent year, the deep learning algorithms have been widely used in computer vision, neural machine translation, neural style transfer and chatbots. In this course, we start from the theories of deep learning and artificial intelligence to describe the contents of the algorithms and apply in various applications in practice. | ||||||||||||||||||||||||||||||||||||
四、課程內容 Course Description | ||||||||||||||||||||||||||||||||||||
●整體敘述 Overall Description LESSON 1 Introduction Introduction LESSON 2 Image Processing for Computer Vision Linear image processing Model fitting Frequency domain analysis LESSON 3 Camera Models and Views Camera models Stereo geometry Camera calibration Multiple views LESSON 4 Image Features Feature detection Feature descriptors Model fitting LESSON 5 Lighting Photometry Lightness Shape from shading LESSON 6 Image Motion Overview Optical flow LESSON 7 Tracking Introduction to tracking Parametric models Non-parametric models Tracking considerations LESSON 8 Classification and Recognition Introduction to recognition Classification: Generative models Classification: Discriminative models Action recognition LESSON 9 Useful Methods Color spaces and segmentation Binary morphology 3D perception LESSON 10 Human Visual System The retina Vision in the brain |
||||||||||||||||||||||||||||||||||||
●分週敘述 Weekly Schedule |
五、考評及成績核算方式 Grading | ||||||||||||||||||||
| ||||||||||||||||||||
六、授課教師課業輔導時間和聯絡方式 Office Hours And Contact Info | ||||||||||||||||||||
●課業輔導時間 Office Hour Mon. 5-6 |
||||||||||||||||||||
●聯絡方式 Contact Info
|
七、教學助理聯絡方式 TA’s Contact Info | |||||
| |||||
八、建議先修課程 Suggested Prerequisite Course | |||||
九、課程其他要求 Other Requirements | |||||
十、學校教材上網、數位學習平台及教師個人網址 University’s Web Portal And Teacher's Website | |||||
學校教材上網網址 University’s Teaching Material Portal: 東吳大學Moodle數位平台:http://isee.scu.edu.tw |
|||||
學校數位學習平台 University’s Digital Learning Platform: ☐東吳大學Moodle數位平台:http://isee.scu.edu.tw ☐東吳大學Tronclass行動數位平台:https://tronclass.scu.edu.tw | |||||
教師個人網址 Teacher's Website: | |||||
其他 Others: | |||||
十一、計畫表公布後異動說明 Changes Made After Posting Syllabus | |||||